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We have investigated the possible role of nitric oxide (NO) in the pathophysiology of bacterial meningitis
(BM) by using the rat model of experimental BM. The nitrite concentration in cerebrospinal fluid (CSF) was
used as a measure of NO production in vivo since NO rapidly degrades to nitrite and nitrate. Rats were
inoculated intracisternally with live bacteria (5 x 10° CFU of Haemophilus influenzae type b strain DL42 or
Rd~/b*/02), with bacterial endotoxin (20 ng of DL42 lipooligosaccharide [LOS] or 200 ng of Escherichia coli
lipopolysaccharide), or with a saline control vehicle. CSF samples were collected preinoculation and at the time
of maximal alteration in blood-brain barrier permeability (BBBP). CSF [nitrite] was quantified by measuring
Ass, after addition of the Greiss reagent and comparison to a standard curve of sodium nitrite. Rats inoculated
with either DL42, Rd~/b*/02, LOS, or lipopolysaccharide demonstrated a significantly elevated mean peak
CSF [nitrite] (8.34, 15.62, 10.75, and 10.44 mM, respectively) versus the concentration prior to treatment
and/or those in saline-treated animals (5.29 and 5.33 mM, respectively; P < 0.05 for each comparison). We then
determined if there was a correlation between CSF [nitrite] and percent BBBP (%BBBP) at various time points
postinoculation with Rd~/b*/02. %BBBP was defined as the concentration of systemically administered
125].1abeled bovine serum albumin in the CSF divided by the level of **I-labeled bovine serum albumin in
serum multiplied by 100. The mean %BBBP increased in tandem with the mean CSF [nitrite] (R = 0.84, P =
0.018), which peaked at 18 h in the absence of a change in the serum [nitrite]. Systemic administration of the
NO synthase inhibitor N-nitro-L-arginine methyl ester demonstrated a significant reduction of mean CSF
nitrite production (0.95 versus 6.0 mM in controls; P = 0.02) when administered intravenously to animals
which had been inoculated intracisternally with 20 ng of LOS. Suppression of mean leukocyte pleocytosis
(3,117 versus 11,590 leukocytes per mm? in control LOS-challenged rats; P = 0.03) and mean alterations of
BBBP (2.11 versus 6.49% in control LOS-challenged rats; P = 0.009) was observed concomitantly with
decreased CSF [nitrite]. These results support the hypothesis that NO contributes to increased %BBBP in

experimental BM.

Bacterial meningitis (BM) is an inflammatory disease of the
central nervous system (CNS) which occurs when bacteria gain
entry to the subarachnoid space. In one model of the patho-
physiologic alterations resulting from BM (47), bacteria re-
lease cell surface components into the cerebrospinal fluid
(CSF) (e.g., lipopolysaccharide [LPS]) which trigger resident
CNS cells to produce inflammatory cytokines, specifically, in-
terleukin-1 and tumor necrosis factor (48, 51, 62). Following
these early events, these cytokines induce a number of cellular
processes that culminate in the chemoattraction of neutrophils,
adherence of neutrophils to cerebromicrovascular endothe-
lium, and subsequent diapedesis of the neutrophils into the
CSF (40, 57). Once the neutrophils have entered the CSF,
exposure to various stimuli induces release of a number of
products, including reactive oxygen species such as superoxide
and hydroxyl radicals that may contribute to the neurologic
damage seen during BM as the disease progresses.

Another reactive oxygen species that may be involved in the
pathophysiology of BM is nitric oxide (NO). NO has been
shown to be produced by a number of mammalian cell types,
including endothelial cells, phagocytes, and resident CNS cells
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(17, 25, 55), and is produced by at least three different syn-
thases (56). The molecule plays a variety of physiological roles,
acting as a vasodilator (6, 37, 59), an antimicrobial agent (2, 3,
14, 24, 32), at least in some systems, and a neurotransmitter (5,
9, 38). Synthesis of NO can be induced by a variety of stimuli,
including bradykinin, gamma interferon, tumor necrosis factor,
and LPS (7, 17, 42).

Within the last 2 years, four observations have suggested
that NO plays a role in the pathophysiology of BM. First, in an
experimental rat model of pneumococcal BM, treatment with
an NO synthase inhibitor attenuated a number of early acute
events associated with BM, such as increases in regional blood
flow, intracranial pressure, brain water content, and leukocyte
(WBC) pleocytosis (46). Second, coincubation of rat astrocytes
in primary culture with pneumococci stimulated NO produc-
tion and was inhibited by NO synthase inhibitors (4). Third,
Kornelisse and colleagues documented significantly increased
[nitrite] (a breakdown product of NO synthesis) in the CSF of
a small number of patients with meningococcal meningitis.
This increased CSF [nitrite] occurred in the absence of an
increase in [nitrite] in serum (27). Finally, increased CSF [ni-
trite] in seven patients with meningitis (three viral, four bac-
terial) was also observed by Milstein et al. (35). We have
confirmed increased CSF [nitrite] in a limited number of BM
patients (unpublished data).

We hypothesize that NO is involved in the pathophysiology
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of BM and may play a role in the altered blood-brain bar-
rier (BBB) permeability (BBBP), cerebral blood flow, brain
edema, and other potential consequences of subarachnoid
space inflammation. Specifically, the purposes of this study
were (i) to compare the CSF [nitrite] of rats inoculated with
live bacteria or with bacterial endotoxin with the CSF [nitrite]
of noninoculated rats or rats inoculated with saline, (ii) to
correlate the increase in %BBBP in rats inoculated with live
bacteria with CSF [nitrite], and (iii) to assess the BBBP re-
sponse in experimental BM after treatment with an NO syn-
thase inhibitor.

MATERIALS AND METHODS

Bacteria. Haemophilus influenzae DL42 and Rd~/b*/O2 were kept at —70°C
in skim milk. The bacteria were plated onto chocolate agar (Becton Dickinson,
Cockeysville, Md.) and incubated overnight at 37°C in 5% CO,. Suspensions of
the bacteria were made in phosphate-buffered saline at a concentration of 108
CFU/ml. Strain DL42 was originally provided by Eric Hansen, University of
Texas Southwestern Medical Center, and is a clinical isolate from an invasive
infection and widely used in work in this laboratory (35, 47, 48, 62). Strain
Rd™/b*/02 is a transformant of the Rd strain made by using donor DNA from
type b strain Eagan (19) and is fully virulent in the rat model (30).

An aliquot of the bacterial solution was incubated at 37°C for 18 h and then
centrifuged at 3,000 X g for 15 min to pellet the bacteria. The supernatant was
then assayed for nitrite as described below.

Endotoxin. H. influenzae DL42 lipooligosaccharide (LOS) was supplied by
Eric Hansen after extraction and purification as described elsewhere (62) and
stored at —70°C. Escherichia coli 026:B6 LPS (Sigma, St. Louis, Mo.) was resus-
pended in normal saline. Aliquots for inoculation were sonicated for 3 min with
a W140D Sonifier (Ultrasonics-Heat Systems, Inc., Plainview, N.Y.) and then
diluted in normal saline to achieve the desired concentration. Doses used were
based on the results of previous studies which demonstrated that maximal WBC
concentrations in CSF and percent BBBP to systemically administered radiola-
beled albumin (%BBBP) were elicited by inoculation of 20 ng of H. influenzae
LOS (48, 62) and by preliminary experiments in this laboratory demonstrating
the same obtained with 200 ng of E. coli LPS (data not shown).

Meningitis model. Adult Wistar rats (approximately 200 g) were anesthetized
with intramuscular injections of ketamine (75 mg/kg) and xylazine (5 mg/kg)
(Barber Veterinary Supply, Lynchburg, Va.). In experiments in which the CSF
[nitrite] in response to endotoxin or bacteria was examined, LOS (20 ng), LPS
(200 ng), and H. influenzae strains (5 X 10° CFU) were inoculated via percuta-
neous puncture of the cisterna magna after withdrawal of 50 wl of CSF. CSF was
then sampled at either 4 h postinoculation with endotoxin or 18 h postinoculation
with bacteria, and CSF [nitrite], alterations in BBBP, and WBC counts were
determined. WBC concentrations in CSF were determined by standard hema-
cytometer methods. These time periods were chosen because they reflect times
of maximal alterations in BBBP previously observed in this model.

In experiments in which an NO synthase inhibitor was administered, LOS (20
ng) was inoculated as described above. The NO synthase inhibitor N-nitro-L-
arginine methyl ester (L-NAME; 5 mg/kg; Sigma) (53) was administered intra-
venously at 0, 1, 2, and 3 h postinoculation via a 25-gauge catheter (Critikon,
Tampa, Fla.) placed in a tail vein. CSF was then sampled at 4 h postinoculation,
and CSF [nitrite], alterations in BBBP, and WBC counts were determined.

Nitrite assay. To deproteinize serum, 25 pl of serum was diluted with 130 pl
of phosphate-buffered saline. The diluted serum was mixed with 25 pl of 0.5 M
zinc acetate (Sigma), and the sample was sonicated for 10 min. The sample was
then assayed for nitrite as described above. For assessment of [nitrite], 25 pl of
a CSF or deproteinized serum sample was added to an equal volume of a 2.4 M
ammonium formate—1.0 M N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
(HEPES) buffer. This mixture was vortexed and incubated for 1 h at 37°C, after
which 37 pl was mixed with an equal volume of an aqueous solution of 0.5%
sulfanilamide (Sigma)-0.01% naphthylethylenediamine (Sigma) and incubated
at room temperature for 15 min. The 455, was read in a Titertek Multiskan Plus
spectrophotometer (Flow Laboratories, McLean, Va.) and compared with a
sodium nitrite standard curve in Krebs-Hensleit buffer (61).

Serum nitrite was assayed by reduction of the nitrate in the samples to nitrite.
A sample (50 pl) or a sodium nitrate standard (50 wl) was added to 150 pl of
phosphate-buffered saline (pH 7.5). NADPH-dependent nitrate reductase (Sig-
ma) was added, and the sample was vortexed, incubated for 2 h at room tem-
perature, mixed (37 pl) with an equal volume of Greiss reagent, and incubated
at room temperature for 15 min, after which the 455, was read as described
above.

BBBP assay. Anesthetized rats were given an intracardiac injection of '*I-
labeled bovine serum albumin (ICN Radiochemicals, Irvine, Calif.) concomi-
tantly with intracisternal inoculation of Rd~/b*/O2 (5 X 10° CFU). CSF and
blood samples were taken at frequent intervals over a 24-h period (two samples
were taken per time period). For assessment of %BBBP, 25 ml of each sample
of CSF and blood was read simultaneously in a gamma counter. After subtraction
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FIG. 1. CSF [nitrite] in rats after intracisternal challenge with LOS (20 ng),
LPS (200 ng), H. influenzae Rd~/b*/02 or DL42 (5 X 10° CFU), or saline. CSF
was sampled at either 4 h postinoculation with endotoxin or 18 h postinoculation
with bacteria, and CSF [nitrite], alterations in BBBP, and WBC counts were
determined. %, before inoculation; m, postinoculation; *, P < 0.05 compared
with inoculation with saline; f, P < 0.05 compared with preinoculation value. EC,
E. coli.
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of background radioactivity, %BBBP was calculated by the following formula:
%BBBP = (counts per minute in CSF/counts per minute in blood) X 100.

Statistics. All statistical tests were performed with Instat biostatistical software
(Graphpad, San Diego, Calif.) to compare postinoculation samples from rats
inoculated with bacteria or endotoxin with either the corresponding preinocula-
tion samples or with postinoculation samples from rats inoculated with saline.
The statistical test used was the Student ¢ test, except in the %BBBP and CSF
[nitrite] time course experiments and for linear correlation determination, for
which the analysis of variance test was used to generate the P value.

RESULTS

We assayed for the presence of nitrite as an indicator of NO
production in CSF and blood. Figure 1 shows the mean CSF
[nitrite] postinoculation with live bacteria, bacterial endotoxin,
or saline. Rats inoculated with either live bacteria or endotoxin
exhibited significantly higher CSF [nitrite] than did uninocu-
lated rats or rats inoculated with saline. For example, the mean
CSF [nitrite] peaks were 8.34 and 10.44 mM for animals inoc-
ulated with DL42 (P = 0.05) and DL42 LOS (P = 0.03),
respectively, compared with 5.33 mM for animals inoculated
with saline. Saline inoculation alone did not alter CSF [nitrite]
(5.29 versus 5.33 mM; P = 0.53). All values for rats that
received live bacteria, LPS, or LOS were significantly greater
than those for saline controls (P < 0.05). The animals treated
with Rd™/b*/O2 demonstrated the greatest increase in CSF
[nitrite], with a mean value of >10 mM over baseline concen-
trations. To answer the question of whether the bacteria could
be the source of nitrite, the bacterial supernatants were as-
sayed and were shown to contain no detectable nitrite (data
not shown).

The potential correlation of increased %BBBP and in-
creased CSF [nitrite] was examined in rats infected with Rd™/
b*/O2 as shown in Fig. 2. CSF [nitrite] and %BBBP both
began to increase at approximately 4 h postinoculation and
reached maximal levels 18 h later. The coefficient of correla-
tion between increased %BBBP and increased CSF [nitrite]
was 0.86 (P = 0.018). However, there was no linear correlation
between increased CSF WBC levels and increased CSF [ni-
trite] (» = 0.0, P = 0.74; data not shown).

Nitrite levels in serum were assessed to address the possi-
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FIG. 2. Correlation of CSF [nitrite] and alterations in BBBP in the rat model
of experimental BM. Anesthetized adult Wistar rats were given an intracardiac
injection of '*I-labeled bovine serum albumin (ICN Radiochemicals) concom-
itantly with intracisternal inoculation of Rd~/b*/02 (5 X 10° CFU). CSF and
blood samples were taken over a 24-h period.

bility that the serum was the actual source of the nitrite in CSF.
In addition to nitrite determinations, serum was assayed for
nitrate to explore the chance that serum nitrite was completely
converted to nitrate. When nitrite and nitrate concentrations
in serum were assessed over the same time period, no increase
over the background was detected (data not shown); this indi-
cated that the increased [nitrite] in the CSF was produced
locally.

Table 1 demonstrates the effect of the NO inhibitor L-
NAME on WBC pleocytosis and alterations of BBBP in rats
inoculated with LOS. In rats treated with L-NAME, both the
mean CSF WBC counts (3,117 WBCs/mm®) and the mean
%BBBP (2.11%) were significantly reduced compared with
those of rats which received no NO synthase inhibitor (11,590
WBCs/mm? [P = 0.035] and 6.49% [P = 0.009]). Infusion with
L-NAME also demonstrated significant suppression of the
mean CSF [nitrite] in comparison with controls (0.95 versus 6.0
mM, respectively; P = 0.02). In addition, L-NAME demon-
strated a significant reduction of the mean CSF [nitrite] below
baseline levels (as seen in Fig. 1).

DISCUSSION

In the experiments presented here, we have begun to exam-
ine the potential role of NO in the pathophysiology of exper-
imental BM. We have demonstrated that the mean CSF [ni-
trite] of rats inoculated with live bacteria (H. influenzae DLA42
and Rd™/b*/02) or endotoxin (H. influenzae LOS and E. coli
LPS) was significantly higher than the mean CSF [nitrite] of
noninoculated rats or of rats inoculated with saline. In animals
inoculated with Rd~/b*/0O2, a correlation between increased
CSF |[nitrite] and increased BBBP with maximal BBBP and
CSF [nitrite] reached at 18 h was demonstrated. Serum [nitrite]
over the same time periods failed to exhibit any detectable
increase over background levels. Infusion of an NO synthase
inhibitor decreased both the mean CSF WBC count and the
mean %BBBP associated with a decrease in CSF [nitrite] com-
pared with those in rats after an LOS challenge. The suppres-
sion of CSF nitrite production by L-NAME below the baseline
level may be due to inhibition of constitutive NO synthases, as
well as inducible NO synthases.

While there is no linear correlation between CSF nitrite
production and CSF WBC pleocytosis, the ability of the NO
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synthase inhibitor L-NAME to reduce WBC concentrations in
CSF indicates that there is some association between NO pro-
duction and WBC entry into the subarachnoid space. This may
be explained by the ability of WBCs to migrate across the
endothelial barrier. It is possible that NO contributes to the
general inflammatory response during BM, thus promoting
production of chemotactic factors and WBC-endothelial cell
adhesion molecules which facilitate entry of WBCs into the
subarachnoid space.

NO has been implicated in the pathophysiology of inflam-
mation in a number of organ systems. Administration of NO
synthase inhibitors to animals with a variety of experimental
diseases, such as adjuvant arthritis, immune complex-induced
pulmonary vascular injury, and chronic ileitis, attenuated the
inflammation while administration of L-arginine (the NO pre-
cursor molecule) enhanced the disease states (20, 21, 34, 41,
61). Increased NO or nitrite production was observed in pa-
tients suffering from ulcerative colitis, from rheumatoid arthri-
tis, or from osteoarthritis in addition to the experimental
model data (8, 33). The above experimental and clinical ob-
servations are in strong agreement with the observations pre-
sented in this report, as well as that of Kornelisse and col-
leagues demonstrating increased CSF [nitrite] in pediatric
patients with meningococcal meningitis (27) and the observa-
tions of Pfister and colleagues that NO synthase inhibitors
attenuated the early altered pathophysiology of experimental
acute BM in a rat model (46).

The mechanism by which NO may contribute to the patho-
physiology of BM is not understood. NO produced by phago-
cytes has been shown to be either cytocidal or cytostatic for a
variety of cells, including tumor cells (14, 18, 64), protozoa (2,
13, 14, 24), bacteria (1, 32), and fungi (3), in various experi-
mental in vitro systems. Within the target cells, NO disrupts
various enzyme systems associated with mitochondrial respira-
tion, DNA replication, and the citric acid cycle (7, 10-12, 18).
The enzyme inactivation is accomplished by NO chelation of
iron cofactors necessary for the function of these enzymes (16,
29, 39, 45, 58). A plausible scenario in which NO inactivates
these iron-containing enzyme systems in the microvascular en-
dothelial cells that constitute a major site of the BBB, thereby
causing cellular destruction or alteration and loss of integrity
of the BBB, may be postulated.

In addition to its enzyme inactivation capability, NO can also
react with the heme group of guanylate cyclase, increasing
production of cyclic GMP (31). This increased cyclic GMP can
trigger smooth muscle relaxation, leading to vasodilatation of
the microvascular network (36, 52, 60). The role of this vaso-
dilatation in the CNS and its consequence for the integrity of
the BBB tight junctions and the pathophysiology of BM are
unknown.

NO has also been shown to initiate the production of other
strong oxidants which may contribute to cellular destruction
and alterations in CNS homeostasis. One such strong oxidant

TABLE 1. Effect of the NO inhibitor L-NAME on WBC
pleocytosis, alterations of BBBP, and CSF [nitrite]
in rats inoculated with LOS

Treatment Mean no. of WBCs/ Mean %BBBP Mean CSF
mm? in CSF = SD + SD [nitrite] = SD

Without L-NAME 11,590 + 8,087 6.49 + 45 6.0 =51
After L-NAME 3,711 = 2,728 2.1+ 1.6° 0.95 + 2.4¢

“P = 0.03 compared with LOS-meningitis control.
b P = 0.01 compared with LOS-meningitis control.
¢ P = 0.02 compared with LOS-meningitis control.
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is peroxynitrite, which has been shown to be produced through
a reaction of NO with superoxide anion (22-24, 26, 36, 52, 60).
Peroxynitrite causes oxidation of sulfhydryl groups in single
amino acids and polypeptides (49), nitration of tyrosine (22),
and lipid peroxidation (50). These peroxynitrite-induced mod-
ifications could interfere with critical metabolic activities of
membrane and cytoplasmic moieties by destroying the active
sites on these molecules. In fact, it has been demonstrated that
peroxidation of membrane lipids is associated with cellular
dysfunction (15, 28, 54). Peroxynitrite may well be more inju-
rious than NO itself during the disease process.

While the source of nitrite in our BM model is unknown,
there are at least three separate mammalian cells (in addition
to neurons) which exhibit the ability to produce nitrite in vitro
at levels sufficient to explain our in vivo observations and may
function as the source(s) of NO. In vitro experiments with
primary rat astrocyte cultures have demonstrated the ability of
these cells, resident CNS cells of obvious importance (42), to
produce an inhibitable nitrite response when incubated with
heat-inactivated, unencapsulated pneumococci (4). The sec-
ond possible source of CSF nitrite is the microvascular endo-
thelium which constitutes the BBB. A number of studies have
shown that vascular endothelial cells possess an inducible NO
synthase that produces NO in response to mediators of inflam-
mation (4, 43-45, 53, 54, 56). It is not known if L-NAME
crosses the BBB; however, if it were demonstrated that L-
NAME does not cross the BBB, then the most likely candidate
for the source of NO in our model would be the cerebromi-
crovascular endothelium. Finally, a third possible source of
CSF nitrite may be the neutrophils that cross into the CSF
during BM (32, 55, 63). As shown by in vitro experiments, both
human and rat neutrophils have demonstrated the ability to
synthesize relatively high levels of nitrite when activated by
various stimuli. Further studies are essential to investigate the
sources of the elevated [nitrite] we have observed.

In conclusion, we have demonstrated an increase in [nitrite]
in the CSF of rats with experimental BM and found that this
nitrite production appears to correlate with elevated BBBP
from 2 to 24 h postinoculation with live organisms. Also, we
have demonstrated that when an NO synthase inhibitor was
employed, decreased CSF [nitrite] corresponded to decreased
WBC counts in the CSF and decreased %BBBP. The source of
the CSF nitrite is unknown but may be astrocytes, neutrophils,
or endothelial cells, alone or in combination, in the CNS dur-
ing the experimental infection. The mechanism whereby NO
exerts its influence on the pathophysiology of BM may be by
initiation of vasodilatation of the microvascular endothelium
or alteration of these endothelial cells via inhibition of the
normal function of various essential metabolic and/or struc-
tural molecules. In light of these observations, it is feasible that
agents which specifically inhibit NO synthesis in the CNS dur-
ing BM may be used as an adjunct therapy to potentially
reduce the morbidity and mortality associated with this dis-
ease.
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